Flash Vacuum Pyrolysis of 5-(Indol-2- and -3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-diones

David W. M. Benzies, Pilar Martinez Fresneda, and R. Alan Jones•
School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ Hamish McNab
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

Flash vacuum pyrolysis of 5 -(indol-2- and -3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-diones results in the initial formation of indolylmethyleneketenes, which generally either lose carbon monoxide to produce ethynylindoles or undergo [1,5]-sigmatropic shifts, followed by electrocyclic rearrangements, to yield carbazolols or benz[c,d]indol-5(1H)-one. 5-(Indol-2-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione and the 3 -methylindol- 2 - yl derivative both yield 3 H -pyrrolo-[1,2-a] indol-3-ones via a [1,7]-sigmatropic rearrangement of the initially formed ketene.

The total synthesis of ergot alkaloids is a topic of importance and interest, ${ }^{1.2}$ with Uhle's ketone (1) remaining a key intermediate in many reaction sequences. Recent studies of the mechanism of the pyrolytic decomposition of 5-substituted 2,2-dimethyl-1,3-dioxane-4,6-diones ${ }^{3.4}$ prompted our examination of the possible formation of the tricyclic ketone by the route outlined by the retrosynthetic scheme $(1) \longrightarrow(3)$ (Scheme 1).
n.m.r. spectroscopic analysis to be the ethynylindoles (5; $\mathrm{R}=$ $\mathbf{H}, \mathrm{Me})$ and (9). In addition to the formation of 3-ethynylindole, the tricyclic ketone (2) was also obtained in low yield from (4; $R=R^{\prime}=H$), whereas pyrolysis of the corresponding 1-methyl-indol-3-yl system ($4 ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) gave an unstable mixture of at least seven products from which only the ethynylindole ($5 ; \mathrm{R}=\mathrm{Me}$) could be isolated in an analytically

Scheme 1.

Although the pyrolysis of pyrrolyl analogues of (3) have been examined in some detail, ${ }^{5.6}$ the synthesis of only three indolyl derivatives has been recorded, ${ }^{6-8}$ with only one report of the pyrolytic decomposition of an indolyl compound, which showed that ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$) gave 9-methylcarbazol-2-ol $(6 ; R=M e) .{ }^{6}$ In view of this lack of experimental data, we have undertaken a full study of the flash vacuum pyrolysis of the indol-3- and -2-ylmethylene derivatives, (4) and (7), which were readily obtained in high yield by a Knoevenagel-type condensation reaction between the appropriate formylindoles and 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid).

In general, the pyrolyses were conducted at $600^{\circ} \mathrm{C}$ under a vacuum of between 10^{-2} and 10^{-3} Torr. The formation of 9-methylcarbazol-2-ol ($6 ; \mathrm{R}=\mathrm{Me}$) $\left(89 \%\right.$) from ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=$ $\mathrm{Me})^{6}$ was confirmed and it was shown that, with the one major exception of 2,2-dimethyl-5-(3-methylindol-2-ylmethylene)-1,3-dioxane-4,6-dione ($7 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$), the pyrolysis of all of the condensation adducts in which there was a methyl group on the indolyl ring at the carbon atom adjacent to the Meldrum's acid moiety (4; $\left.\mathrm{R}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{\prime}=\mathrm{Me}\right) ;\left(7 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)$ gave carbazole derivatives ($6 ; \mathrm{R}=\mathrm{H}, \mathrm{Me}$) and (10). The yields were generally high ($>90 \%$), except for the formation of carbazol2 -ol (40%) from ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$), where a competing reaction pathway is possible (Scheme 4). In the absence of the adjacent methyl group, the only identifiable products, with the exception of $3 H$-pyrrolo- $1,2-a$]indol-3-one $\left(8 ; \quad \mathbf{R}^{\prime}=\mathrm{H}\right)$ obtained in 95% yield from ($7 ; R=R^{\prime}=H$), were generally isolated in low yield (20%) and they were shown by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$
pure form. No unequivocal evidence was found for the formation of the N-methyl derivative of the tricyclic ketone (2). The $3 H$-pyrrolo $\left[1,2-a\right.$]indol-3-ones ($8 ; \mathbf{R}^{\prime}=\mathbf{H}$ or Me) were isolated in high yield ($>95 \%$) from the Meldrum's acid adducts of indole- and of 3-methylindole-2-carbaldehyde (7; $\mathrm{R}=\mathrm{H}$, $\mathbf{R}^{\prime}=\mathbf{H}$ or Me). The pyrolyses of adducts (4) and (7) are shown in Schemes 2 and 3, respectively.

Scheme 2.

(10)

Scheme 3.

A mechanistic pathway, which accounts for the formation of all of the pyrolysis products, is similar in many respects to that postulated earlier for the pyrolysis of the aminomethylene and benzylidene derivatives of Meldrum's acid. ${ }^{3.4}$ Fragmentation of the 2,2-dimethyl-1,3-dioxane-4,6-dione ring produced the indolylmethyleneketene [e.g., (4) $\longrightarrow(11)$]. In the absence of an adjacent methyl group, decarbonylation of the ketene (11; $\mathrm{R}^{\prime}=\mathrm{H}$) leads, via the carbene (12), to the ethyne (5). In contrast, a [1,5]-sigmatropic shift involving a hydrogen of the methyl group of the 2-methylindole derivatives and a subsequent electrocyclic ring closure, followed by a tautomeric shift, produces the carbazol-2-ols (6). Similar mechanistic sequences account for the formation of 2-ethynyl-1-methylindole (9) and 9-methylcarbazol-3-ol (10) from (7; $\mathrm{R}=\mathrm{Me}$, $\mathrm{R}^{\prime}=\mathrm{H}$; and $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$, respectively).

The formation of the benz[$c, d]$ indol-5-one system (2) from the intermediate ketene (13) requires an initial [1,5]-sigmatropic shift of the proton at the 1 -position of the indole ring (11; $\mathrm{R}=$ $\left.\mathrm{R}^{\prime}=\mathrm{H}\right) \longrightarrow(\mathbf{1 3})$. The reaction pathway is completed by an electrocyclic ring closure onto the 4-position of the indole system to give the tricyclic ketone (14), and a prototropic shift. Evidence for this mechanism is provided by the observation that pyrolysis of the 1 -deuterio compound ($4 ; \mathrm{R}=\mathrm{D}, \mathrm{R}^{\prime}=\mathrm{H}$) yields 4-deuteriobenz[$c, d]$ indol- $5(1 H)$-one. In support of the proposed mechanism it is significant that the corresponding 1 -methylbenz $[c, d]$ indol- $5(1 H)$-one does not appear to be formed during the pyrolysis of compound ($4 ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$). It is noteworthy, however, that no evidence was found for the formation of 2-methylbenz[$c, d]$ indol-5(1H)-one via a [1,5]sigmatropic shift of the 1 -proton during the pyrolysis of compound ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$). Extensive polymerisation occurred during the pyrolysis and the only product isolated was carbazol-2-ol, resulting from a preferential [1,5]-sigmatropic rearrangement involving a hydrogen of the 2-methyl group.

The pyrrolo $[1,2-a]$ indol-3-ones ($8 ; \mathrm{R}^{\prime}=\mathrm{H}$ and Me) arise from a [1,7]-prototropic rearrangement of the initially formed methylene ketene (15), followed by ring closure (Scheme 5). It is notable that the yields of both pyrolysis products are high and that, in contrast with the pyrolysis of 2,2-dimethyl-5-(2-methylindol-3-ylmethylene)-1,3-dioxane-4,6-dione (4; $\mathrm{R}=\mathrm{H}$, $\mathbf{R}^{\prime}=\mathrm{Me}$), it is the more acidic NH proton of the 3-methylindol-

(11)
(12)

(5)

(13)

(6)

(14)

Scheme 4.
2-yl-methylene system which migrates in preference to a [1,5]sigmatropic hydrogen shift from the 3-methyl group.

Experimental

I.r. spectra were measured for all compounds as mulls in Nujol using a Perkin-Elmer 298 spectrometer. A Pye-Unicam SP

Scheme 5.

8-200 spectrophotometer was used to measure the electronic spectra of $c a .10^{-5} \mathrm{~m}$ solutions of the compounds in ethanol. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra were measured for $c a .40 \%$ solutions in the solvents indicated at 100 or 200 MHz and at 25 or 50 MHz , respectively, using JEOL-JNM-100 FT and Bruker WP-200-SY spectrometer. All chemical shifts are given relative to the internal standard $\left(\mathrm{SiMe}_{4}\right)$. The ${ }^{2} \mathrm{H}$ n.m.r. spectrum was measured at 55.28 MHz using a Bruker WH- 360 spectrometer. Light petroleum refers to the fraction boiling in the range $60-80^{\circ} \mathrm{C}$.

General Procedure for the Reaction of Formylindoles with 2,3-Dimethyl-1,3-dioxane-4,6-dione (Meldrum's Acid).-Acetic acid $(0.1 \mathrm{ml})$ and piperidine $(0.1 \mathrm{ml})$ were added to equimolar quantities (ca. 0.006 mol) of the formylindole and 2,2-dimethyl-1,3-dioxane-4, 6 -dione in benzene (20 ml) and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h . Evaporation of the volatile material gave a solid, which was recrystallised to give the pure condensation product.

2-Formylindole ($0.8 \mathrm{~g}, 0.0055 \mathrm{~mol}$) was converted into 5 -(indol-2-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (7; $\left.\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)\left(1.3 \mathrm{~g}, 87 \%\right.$), m.p. $142^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 66.3; H, 4.7; N, 5.1. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C, 66.4; H, 4.8; N , 5.2%); $v_{\text {max. }} 3300,1700$, and $1580 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 206$ ($\log \varepsilon 4.76$), 255 infl. (4.14), and $417.5 \mathrm{~nm}(4.92)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.76(6 \mathrm{H}, \mathrm{s})$, $7.14(1 \mathrm{H}, \mathrm{t}), 7.41(1 \mathrm{H}, \mathrm{t}), 7.66(1 \mathrm{H}, \mathrm{s}), 7.80(2 \mathrm{H}, \mathrm{m}), 8.43(1 \mathrm{H}, \mathrm{s})$, and $11.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 26.8(\mathrm{q}), 104.3(\mathrm{~s}), 106.6$ (2), 113.4 (d), 121.2 (3), 122.1 (d), 122.7 (d), 127.3 (s), 128.1 (d), 131.3 (s), 140.2 (s), 144.1 (d), 161.8 (s), and 162.7 (s).

2-Formyl-1-methylindole ($1.0 \mathrm{~g}, 0.0063 \mathrm{~mol}$) gave 2,2-dimethyl-5-(1-methylindol-2-ylmethylene)-1,3-dioxane-4,6-dione (7; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) $\left(1.6 \mathrm{~g}, 90 \%\right.$), m.p. $175-176^{\circ} \mathrm{C}$ (from dichloromethane-light petroleum) (Found: C, 67.4; H, 5.1; N, 4.7. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $\mathrm{C}, 67.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.9 \%$); $v_{\text {max. }} 1715$ and $1570 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 210(\log \delta 4.36), 259(3.81)$, and 421 nm (4.45); $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.75(6 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 7.14(1 \mathrm{H}, \mathrm{t})$, $7.43(1 \mathrm{H}, \mathrm{t}), 7.59(1 \mathrm{H}, \mathrm{s}), 7.74(2 \mathrm{H}, \mathrm{t})$, and $8.46(1 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 26.8(\mathrm{q}), 29.7$ (q), 104.0 (s), 109.1 (s), 111.1 (d), 116.8 (d), 121.1 (d), 123.2 (d), 126.6 (s), 127.5 (d), 131.5 (s), 140.6 (s), 141.3 (d), 159.7 (s), and 163.2 (s).

2-Formyl-3-methylindole ($0.7 \mathrm{~g}, 0.0044 \mathrm{~mol}$) gave 2,2-dimethyl-5-(3-methylindol-2-ylmethylene)-1,3-dioxane-4,6dione (7; $\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$) $\left(0.9 \mathrm{~g}, 72 \%\right.$), m.p. $200{ }^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{8} 196.1-196.6^{\circ} \mathrm{C}$) (Found: C, 67.4; H, 5.2; N, 4.9. Calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 67.4; H, 5.3; N, 4.9\%); $v_{\text {max. }} 3290$, 1725,1690 , and $1575 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 210$ (log $\varepsilon 4.35$), 255.5 (3.72), and $425 \mathrm{~nm}(4.63) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.76(6 \mathrm{H}, \mathrm{s}), 2.58(3 \mathrm{H}, \mathrm{s}), 7.11$ $(1 \mathrm{H}, \mathrm{t}), 7.41(1 \mathrm{H}, \mathrm{t}), 7.68(2 \mathrm{H}, \mathrm{t}), 8.40(1 \mathrm{H}, \mathrm{s})$, and $11.60(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 9.4$ (q), 26.9 (q), 104.1 (s), 104.3 (s), 113.0 (d), 120.5 (d), 121.2 (d), 127.3 (s), 128.7 (s), 129.0 (d), 131.9 (s), 139.4 (s), 139.8 (d), 162.5 (s), and 162.7 (s).

2-Formyl-1,3-dimethylindole ($1.0 \mathrm{~g}, 0.0056 \mathrm{~mol}$) was converted into 5-(1,3-dimethylindol-2-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione ($7 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$) $(1.6 \mathrm{~g}, 95 \%$), m.p. $230-232^{\circ} \mathrm{C}$ (from dichloromethane-light petroleum) (Found: C, 68.1; $\mathrm{H}, 5.5 ; \mathrm{N}, 4.6 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{C}, 68.2 ; \mathrm{H}$, $5.7 ; \mathrm{N}, 4.7 \%$); $v_{\text {max. }} 1720$ and $1580 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 223(\log \varepsilon 4.45)$, 266 (3.96), and $427 \mathrm{~nm}(4.19)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.82(6 \mathrm{H}, \mathrm{s}), 2.25$ ($3 \mathrm{H}, \mathrm{s}$), $3.73(3 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{t}), 7.45(2 \mathrm{H}, \mathrm{m}), 7.71(1 \mathrm{H}, \mathrm{d})$, and $8.50(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 12.0(\mathrm{q}), 27.1$ (q), 31.2 (q), 104.1 (s), 110.5 (s), 111.8 (d), 120.0 (d), 120.6 (d), 123.5 (s), 126.5 (s), 127.1 (d), 131.4 (s), 140.0 (s), 142.8 (d), 159.2 (s), and 162.0 (s).

3-Formylindole ($1.0 \mathrm{~g}, 0.0067 \mathrm{~mol}$) gave 5 -(indol-3-ylmethyl-ene)-2,2-dimethyl-1,3-dioxane-4,6-dione ($4 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$) (1.8 $\mathrm{g}, 97 \%$), m.p. $241^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{7} 254-255^{\circ} \mathrm{C}$) (Found: C, 66.2; $\mathrm{H}, 4.8 ; \mathrm{N}, 5.1$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{4}$: C, 66.4; $\mathrm{H}, 4.8 ; \mathrm{N}$, 5.2%); $v_{\text {max. }} 3150,1670$, and $1550 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }} 213(\log \varepsilon 4.58)$, 270 (4.20), and $411 \mathrm{~nm}(4.79)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.74(6 \mathrm{H}, \mathrm{s}), 7.36$
($2 \mathrm{H}, \mathrm{m}$), $7.64(1 \mathrm{H}, \mathrm{dd}), 7.92(1 \mathrm{H}, \mathrm{dd}), 8.78(1 \mathrm{H}, \mathrm{s}), 9.37(1 \mathrm{H}, \mathrm{s})$, and $11.79\left(1 \mathrm{H}, \mathrm{br}\right.$ s); $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 26.7(\mathrm{q}), 103.0(\mathrm{~s}), 103.3(\mathrm{~s})$, 111.3 (s), 113.2 (d), 117.8 (d), 122.9 (d), 123.8 (d), 128.8 (s), 136.3 (s), 140.0 (d), 146.1 (d), 161.3 (s), and 163.9 (s).

3-Formyl-1-methylindole ($1.0 \mathrm{~g}, 0.0063 \mathrm{~mol}$) was converted into 2,2-dimethyl-5-(1-methylindol-3-ylmethylene)-1,3-dioxane4,6 -dione $\left(4 ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}\right)(1.67 \mathrm{~g}, 93 \%)$, m.p. $215-217^{\circ} \mathrm{C}$ (from ethanol) (Found: $\mathrm{C}, 67.1 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.7 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires $\mathrm{C}, 67.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.9 \%$); $v_{\text {max. }} 1695$ and $1550 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }} 217.5(\log \varepsilon 4.39), 244.5$ (3.84), 275 (4.06), 281.5 (3.95), and $416 \mathrm{~nm}(4.54)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.71(6 \mathrm{H}, \mathrm{s}), 4.02(3 \mathrm{H}, \mathrm{s}), 7.44(2$ $\mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{m}), 7.90(1 \mathrm{H}, \mathrm{m}), 8.69(1 \mathrm{H}, \mathrm{s})$, and $9.32(1 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 26.9(\mathrm{q}), 34.2$ (q), 102.7 (s), $103.0(\mathrm{~s}), 110.5(\mathrm{~d})$, 111.2 (s), 117.8 (d), 123.2 (d), 123.9 (d), 129.5 (s), 137.1 (s), 142.8 (d), 145.5 (d), 161.3 (s), and 164.0 (s).

3-Formyl-2-methylindole ($1.0 \mathrm{~g}, 0.0063 \mathrm{~mol}$) gave 2,2-dimethyl-5-(2-methylindol-3-ylmethylene)-1,3-dioxane-4,6-dione $\left(4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}\right)(0.41 \mathrm{~g}, 23 \%)$, m.p. $225-228^{\circ} \mathrm{C}$ (from ethanol) (Found: C, 67.1; H, 5.4; N, 4.8. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C, $67.4 ; \mathrm{H}, 5.3 ; \mathrm{N}, 4.9 \%$) $v_{\text {max. }} 3200,1690$, and $1560 \mathrm{~cm}^{-1} ; \lambda_{\text {max }}$ 218 infl. $(\log \varepsilon 5.00), 260(4.46)$, and $417 \mathrm{~nm}(4.66) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $1.78(6 \mathrm{H}, \mathrm{s}), 2.63(3 \mathrm{H}, \mathrm{s}), 7.19(3 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{m}), 8.55(1 \mathrm{H}$, s), and $12.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 12.9(\mathrm{q}), 26.6(\mathrm{q}), 102.6$ (s), 103.1 (s), 111.8 (s), 112.0 (d), 122.0 (d), 123.0 (d), 123.2 (d), 125.5 (s), 136.7 (s), 147.3 (d), 153.5 (s), 160.9 (s), and 164.0 (s).

3-Formyl-1,2-dimethylindole ($1.0 \mathrm{~g}, 0.0056 \mathrm{~mol}$) gave 5-(1,2-dimethylindol-3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6dione $\left(4 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}\right)(1.26 \mathrm{~g}, 75 \%$), m.p. $204-207 \mathrm{C}$ (from ethanol) (lit., ${ }^{6} 194{ }^{\circ} \mathrm{C}$) (Found: C, 68.2; H, 5.7; N, 4.5. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}: \mathrm{C}, 68.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 4.7 \%$); $v_{\text {max. }} 1705$ and 1560 $\mathrm{cm}^{-1} ; \lambda_{\text {max. }} 221.5$ ($\log \varepsilon 4.19$), 261 (3.74), 273 (3.67), 286infl. (3.52), and $422 \mathrm{~nm}(4.45)$; $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.79(6 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}$, s), $3.84(3 \mathrm{H}, \mathrm{s}), 7.00-7.20(1 \mathrm{H}, \mathrm{m}), 7.20-7.45(2 \mathrm{H}, \mathrm{m}), 7.55-$ $7.70(1 \mathrm{H}, \mathrm{m})$, and $8.57(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 11.9(\mathrm{q}), 26.7(\mathrm{q})$, 30.7 (q), 102.6 (s), 102.9 (s), 110.8 (d), 111.4 (s), 122.2 (d), 122.8 (d), 122.9 (d), 124.9 (s), 138.1 (s), 147.0 (d), 153.4 (s), 159.9 (s), and 163.6 (s).

General Procedure for the Flash Pyrolysis of the 5-(Indolyl-methylene)-2,2-dimethyl-1,3-dioxane-4,6-diones.-The Meldrum's acid adducts were sublimed at 10^{-2} to $10^{-3} \mathrm{mmHg}$ pressure into a horizontal silica tube ($35 \times 2.5 \mathrm{~cm}$), which was maintained at a temperature of $60{ }^{\circ} \mathrm{C}$ unless otherwise stated. Inlet temperatures of $190-210^{\circ} \mathrm{C}$ were required for sublimation to give a through-put rate of $0.0005-0.001 \mathrm{~mol} \mathrm{~h}^{-1}$. The products were trapped in a U-tube, which was cooled to $-196^{\circ} \mathrm{C}$. T.l.c. analyses of the pyrolysis mixture were carried out in Merck Kieselgel $60 \mathrm{~F}_{254}$ plates, and analytically pure samples of the products were obtained by preparative centrifugally accelerated radial t.l.c. using a Chromatotron model 7924 T chromatograph using Merck Kieselgel $60 \mathrm{PF}_{254}$ as the stationary phase.

5-(Indol-2-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (7; $\left.\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}\right)(0.192 \mathrm{~g}, 0.001 \mathrm{~mol})$ gave $3 H$-pyrrolo[1,2a] indol-3-one ($8 ; \mathrm{R}^{\prime}=\mathrm{H}$) $(0.115 \mathrm{~g}, 95 \%), R_{\mathrm{F}} 0.96$ (diethyl ether); m.p. $90-92{ }^{\circ} \mathrm{C}$ (lit., ${ }^{9} 94-95^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 77.85 ; \mathrm{H}, 4.2$; $\mathrm{N}, 8.2$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{NO}: \mathrm{C}, 78.1 ; \mathrm{H}, 4.2 ; \mathrm{N}, 8.3 \%$); $v_{\text {max. }} 1720$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.89(1 \mathrm{H}, \mathrm{d}, J 6.0 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{s}), 6.90-$ $7.15(2 \mathrm{H}, \mathrm{m}), 7.27(2 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J 7.3 \mathrm{~Hz})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 108.3$ (d), 112.1 (d), 122.8 (d), 123.1 (d), 127.3 (d), 128.0 (s), 133.7 (s), 134.4 (d), 135.0 (d), 141.1 (s), and 164.7 (s).

Pyrolysis of 2,2-dimethyl-5-(1-methylindol-2-ylmethylene)-1,3-dioxane 4,6-dione (7; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) ($0.417 \mathrm{~g}, 0.0015$ mol) at $750^{\circ} \mathrm{C}$ gave 2-ethynyl-1-methylindole (9) (0.013 g , 5.7%), $R_{\mathrm{F}} 0.67$ (tetrachloromethane); m.p. $63-65^{\circ} \mathrm{C}$ (lit., ${ }^{10}$ $70.5-72{ }^{\circ} \mathrm{C}$) (Found: 84.9; H, 5.6; N, 8.9. Calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}$: $85.1 ; \mathrm{H}, 5.85 ; \mathrm{N}, 9.0 \%) ; v_{\text {max. }} 3255$ and $2110 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.51(1 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{s}), 7.10-7.35(3 \mathrm{H}, \mathrm{m})$, and
7.64 (1 H, d); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 30.3$ (q), 75.6 (s), 83.2 (d), 108.2 (d), 109.3 (d), 120.5 (d), 120.8 (s), 121.0 (d), 123.2 (d), 126.8 (s), and 137.1 (s).

2,2-Dimethyl-5-(3-methylindol-2-ylmethylene)-1,3-dioxane4,6 -dione ($7 ; \mathrm{R}=\mathbf{H}, \mathrm{R}^{\prime}=\mathrm{Me}$) $(0.828 \mathrm{~g}, 0.0029 \mathrm{~mol})$ gave 9-methyl-3H-pyrrolo-[1,2-a]indol-3-one $\left(8 ; \mathrm{R}^{\prime}=\mathrm{Me}\right)(0.520 \mathrm{~g}$, 98%), $R_{\mathrm{F}} 0.55$ [hexane-ethyl acetate ($1: 1$)]; m.p. $94-95^{\circ} \mathrm{C}$ (Found: C, 78.4; H, 4.9; N, 7.5. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}$ requires $\mathrm{C}, 78.7 ; \mathrm{H}$, $4.95 ; \mathrm{N}, 7.65 \%) ; m / z 183 ; v_{\text {max. }} 1715$ and $1612 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $2.16(3 \mathrm{H}, \mathrm{s}), 5.81(1 \mathrm{H}, \mathrm{d}), 7.02(1 \mathrm{H}, \mathrm{td}), 7.08(1 \mathrm{H}, \mathrm{d}), 7.20(1 \mathrm{H}$, $\mathrm{td}), 7.24(1 \mathrm{H}, \mathrm{dt})$, and $7.57(1 \mathrm{H}, \mathrm{dt}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 8.9(\mathrm{q}), 112.0(\mathrm{~d})$, 119.2 (d), 120.7 (d), 122.7 (d), 126.0 (d), 127.4 (d), 133.2 (d), 134.5 (s), 134.8 (s), 138.3 (s), and 164.6 (s); and a second, unidentified, component (0.009 g), $R_{\mathrm{F}} 0.41$ [hexane-ethyl acetate ($1: 1$)].

5-(1,3-Dimethylindol-2-ylmethylene)-2,2-dimethyl-1,3-
dioxane-4,6-dione ($7 ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$) $(0.234 \mathrm{~g}, 0.0008 \mathrm{~mol})$ gave 9 -methylcarbazol-3-ol (10) ($0.127 \mathrm{~g}, 82 \%$), $R_{\mathrm{F}} 0.48$ [light petroleum-ethyl acetate (1:1)]; m.p. $146-147^{\circ} \mathrm{C}$ (Found: C, 79.1; $\mathrm{H}, 5.6$; $\mathrm{N}, 6.95 . \mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}$ requires $\mathrm{C}, 79.2 ; \mathrm{H}, 5.6 ; \mathrm{N}$, $7.1 \%) ; v_{\text {max. }} 3500$ and $3250 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 3.68(3 \mathrm{H}$, $\mathrm{s}), 7.00-7.60(5 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{dd})$, and $7.94(1 \mathrm{H}, \mathrm{dt}) ; \delta_{\mathrm{C}}$ ($\left[^{2} \mathrm{H}_{6}\right]$ acetone) 29.0 (q), 105.7 (d), 108.7 (d), 109.3 (d), 115.2 (d), 118.3 (d), 120.4 (d), 122.8 (s), 123.6 (s), 125.8 (d), 136.0 (s), 141.8 (s), and 150.8 (s).

5-(Indol-3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione $\left(4 ; R=R^{\prime}=H\right)(0.310 \mathrm{~g}, 0.0011 \mathrm{~mol})$ gave 3-ethynylindole (5; $\mathrm{R}=\mathrm{H})(0.013 \mathrm{~g}, 8.06 \%), R_{\mathrm{F}} 0.60$ [light petroleum-ethyl acetate (1:1)]; m.p. $106-108^{\circ} \mathrm{C}$ (lit., ${ }^{1.12} 102^{\circ} \mathrm{C}$) (Found: C, 84.7 ; H, 4.9; N, 9.6. Calc. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}: \mathrm{C}, 85.1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 9.9 \%$; $v_{\text {max. }}$ 3410,3265 , and $2105 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.22(1 \mathrm{H}, \mathrm{s}), 7.18-7.40$ ($3 \mathrm{H}, \mathrm{m}$), $7.44(1 \mathrm{H}, \mathrm{d}), 7.73-7.80(1 \mathrm{H}, \mathrm{m})$, and $8.15(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 78.5$ (d), 97.7 (s), 111.1 (d), 119.8 (d), 120.7 (d), 122.5 (s), 123.0 (d), 128.5 (d), 129.7 (s), and 135.0 (s); and benz $[c, d]$ indol- $5(1 H)$-one (2) $(0.015 \mathrm{~g}, 8.1 \%), R_{\mathrm{F}} 0.16$ [light petroleum-ethyl acetate (1:1)]; m.p. $216-218^{\circ} \mathrm{C}$ (lit., ${ }^{13} 215-$ $220{ }^{\circ} \mathrm{C}$) (Found: C, 77.9; H, 4.0; N, 8.3. Calc. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{NO}: \mathrm{C}$, $78.1 ; \mathrm{H}, 4.2 ; \mathrm{N}, 8.3 \%$); $v_{\max .} 1670,1630$, and $1580 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.45(1 \mathrm{H}, \mathrm{d}), 7.55(1 \mathrm{H}, \mathrm{t}), 7.95(2 \mathrm{H}$, overlapping br t), $8.14(1 \mathrm{H}, \mathrm{s})$, and $12.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 110.8(\mathrm{~s}), 117.4$ (d), 120.0 (d), 124.6 (d), 126.9 (d), 127.9 (s), 132.0 (d), 134.5 (d), 136.0 (s), 184.6 (s), and 206.6 (s).

Pyrolysis of 5-(1-deuterioindol-3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione ($4 ; \mathrm{R}=\mathrm{D}, \mathrm{R}^{\prime}=\mathrm{H}$) produced 4-deuteriobenz $[c, d]$ indol- $5(1 H)$-one, $\delta_{\mathrm{D}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 6.32(\mathrm{~s})$.

2,2-Dimethyl-5-(1-methylindol-3-ylmethylene)-1,3-dioxane-4,6-dione ($4 ; \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) $(0.514 \mathrm{~g}, 0.018 \mathrm{~mol})$ gave 1 -methyl-3-ethynylindole ($5 ; \mathrm{R}=\mathrm{Me}$) $(0.059 \mathrm{~g}, 19.6 \%), R_{\mathrm{F}} 0.59$ [light petroleum-ethyl acetate (1:1)]; m.p. $76-78^{\circ} \mathrm{C}$ (lit., ${ }^{10}$ $37-38^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 85.0 ; \mathrm{H}, 5.7$; N, 9.0. Calc. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}: \mathrm{C}$, $85.1 ; \mathrm{H}, 5.85 ; \mathrm{N}, 9.0 \%)$; $v_{\text {max. }} 3270$ and $2105 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.27(1 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 7.20-7.40(3 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{d})$, and $7.77-7.83(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 32.8(\mathrm{q}), 78.5(\mathrm{~d}), 95.8(\mathrm{~s}), 109.5$ (d), 119.9 (d), 120.3 (d), 121.4 (s), 122.6 (d), 129.3 (s), 133.0 (d), and 136.0 (s).

2,2-Dimethyl-5-(2-methylindol-3-ylmethylene)-1,3-dioxane-4,6-dione ($4 ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}$) $(0.58 \mathrm{~g}, 0.002 \mathrm{~mol})$ gave carbazol-2-ol ($6 ; \mathrm{R}=\mathrm{H}$) $(0.149 \mathrm{~g}, 40 \%), R_{\mathrm{F}} 0.67$ [light petroleum-ethyl acetate (1:1)]; m.p. 262-264 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{14-16}$ 259-262, 274-275, and $277^{\circ} \mathrm{C}$) (Found: C, 78.3; H, 4.85; N, 7.4. Calc. for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{NO}: \mathrm{C}, 78.7 ; \mathrm{H}, 4.95 ; \mathrm{N}, 7.65 \%$); $v_{\text {max. }} 3410$ and $3270 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 6.75(1 \mathrm{H}, \mathrm{dd}), 6.97(1 \mathrm{H}, \mathrm{d})$, $7.00-7.50(3 \mathrm{H}, \mathrm{m}), 7.92(2 \mathrm{H}$, overlapping t), $8.33(1 \mathrm{H}, \mathrm{s})$, and $10.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right]$ acetone 97.3 (d), 109.2 (d), 111.1 (d), 117.0 (s), 119.4 (d), 121.4^{*} (d), 124.3 (s), 124.6 (d), 140.8 (s), 142.0 (s), and 157.3 (s).

5-(1,2-Dimethylindol-3-ylmethylene)-2,2-dimethyl-1,3-dioxane-4,6-dione ($\left.4 ; R=R^{\prime}=\mathrm{Me}\right)(0.520 \mathrm{~g}, 0.0017 \mathrm{~mol})$ gave 9-methylcarbazol-2-ol ($0.299 \mathrm{~g}, 89 \%$), $R_{\mathrm{F}} 0.68$ (ethyl acetate); m.p. 166-168 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{6.14 .17} 164-165,166-166.5$, and $167-$ $168{ }^{\circ} \mathrm{C}$) (Found: C, 78.9; H, 5.6; N, 7.0. Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}: \mathrm{C}$, $79.2 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.1 \%$); $v_{\text {max }} 3420$ and $3350 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 3.78(3 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{dd}), 6.92(1 \mathrm{H}, \mathrm{d})$, $7.00-7.40(3 \mathrm{H}, \mathrm{m}), 7.94(2 \mathrm{H}$, overlapping t), and $8.44(1 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone 29.1 (q), 95.5 (d), 109.1 * (d), 116.5 (s), 119.5 (d), 119.7 (d), 121.6 (d), 124.0 (s), 124.8 (d), 142.0 (s), 143.6 (s), and 157.7 (s).

Acknowledgements

One of us (P. M. F.) thanks the University of Murcia, Spain, for leave of absence during the academic year 1984-1985, and the Communidad Autonoma de Region Murcia for financial support.

References

1 D. C. Horwell, Tetrahedron, 1980, 36, 3123.
2 A. P. Kozikowski, Heterocycles, 1981, 16, 267.
3 H. J. Gordon, J. C. Martin, and H. McNab, J. Chem. Soc., Chem. Commun., 1983, 957; J. Chem. Soc., Perkin Trans. 1, 1984, 2129.
4 H. Briehl, A. Lukosch, and C. Wentrup, J. Org. Chem., 1984, 49, 2772.
5 H. McNab, J. Org. Chem., 1981, 46, 2809.
6 G. Baxter, R. F. C. Brown, and C. L. McMullen, Aust. J. Chem., 1974, 27, 2605.
7 I. N. Khaimov, Yu. Dzhurakulov, and A. N. Kost, Fiziol. Akt. Veshchestva, 1978, 10, 1070 (Chem. Abstr., 1979, 90, 22927).
8 R. M. Wilson and A. Hengge, Tetrahedron Lett., 1985, 26, 3673.
9 R. W. Franck and J. Auerbach, J. Org. Chem., 1971, 36, 31.
10 M. S. Shvartsberg, S. F. Vasilevskii, and T. A. Prikhodko, Izv. Akad. Nauk SSSR, Ser. Khim., 1982, 2562 (Chem. Abstr., 1983, 98, 125812).
11 C. Wentrup and H. W. Winter, Angew. Chem., Int. Ed. Engl., 1978, 17, 609.

12 N. N. Suvorov, A. B. Kamenski, Yu. I. Smushkevich, and A. Livshits, Zh. Org. Khim., 1977, 13, 197 (Chem. Abstr., 1977, 86, 139745).
13 C. A. Grob and B. Hofer, Helv. Chim. Acta, 1952, 35, 2095.
14 Y. Oikawa and O. Youemitsu, J. Org. Chem., 1976, 41, 1118.
15 H. J. Teuber and D. Cornelius, Justus Liebigs Ann. Chem., 1964, 671, 127.

16 J. A. Cummins and M. L. Tomlinson, J. Chem. Soc., 1955, 3475.
17 F. Muth, G.P. 553 409/1931 (Chem. Abstr., 1932, 26, 4612).

[^0]
[^0]: * Attributable to two carbon nuclei.

